今回は、「規範的意思決定理論」について解説します。
規範的意思決定理論とは
規範的意思決定理論とは、意思決定者は個々の選択の期待値を計算し、最大の期待値を提供する選択肢をとるという理論です。
この議論は、どのような選択肢であっても、それは選択肢が実現する確率Pと、選択肢が実現した際に意思決定者が得る理録Xで構成されるギャンブルとして抽象的に表現可能であるという前提を根底に持っています。
しかし人間の決定現象は、金銭X(利得) の客観価値ではなく、Xの主観的価値、すなわちXの効用(Utility)によってよりよく説明されることはが19世紀に指摘されていました。
よって期待値ではなく期待効果を最大化させる意思決定を合理的とみなす理論が、規範的理論として受け入れられています。
この期待効用理論(Ecpected utility theory)は、フォン・ノイマン氏とモルゲンシュテルン氏が定式化しました。
彼らは、U(Xの効用)の期待値すなわちP *U(X)を最大化させる選択肢を選ぶ意思決定が合理的(無矛盾)であるkとを数学的に証明しました。
期待値と期待効用の違いは、次の選択課題で例示できます。
一般に、「確実に1万円を得る」選択肢と、「確率0.5で2万円得られるが、確率0.5で何も得られない」ギャンブルの選択肢では、前者が好まれます。
期待値の等しい両者で前者が好まれるという事実では、意思決定者にとって前者の期待効用U(10000)が後者の期待効用0.5*U(20000)+0.5*U(0)を上回ることの反映です。
U(0)とすると、U(10000)>0.5*U(20000)となり、これは利得の領域において、一般に意思決定者がリスク忌避的であることを示しています。
リスク忌避は、人間の効用関数が客観価値Xの非線形・上に凸の漸近的関数であることを反映しています。
この関数系は、損失領域におけるリスク志向、すなわち確実な損失よりは、同等の期待値で損失ゼロの帰結を可能にするギャンブルを好む傾向を合意しています。
「意思決定者は期待効用の最大化を目指すべし」と考える効用理論は、標準的な経済学の根幹を成しています。
そこでは意思決定者は常に合理的であり無矛盾です。
無矛盾であるとは、同一の決定場面における決定は、選択肢の記述方法や解釈のあり方に影響を受けないということです。
しかし、人間の意思決定はそのような合理性には従わない場面があります。
よって記述的および処方的アプローチが必要とされるのです。
投資に応用すると・まとめ
人間は、損失となると、利益とは異なる選好をするということです。
これは主に、「確実に1万円得る場合」と「0.5の確率で2万円得られるが、0.5の確率で何も得られない場合」であれば、前者が好まれるということです。
これは期待値的には同じなのですが、人間は同じ額でも、損失になった方がダメージが大きいという結果が出ています。
詳細→【 曖昧性について 】曖昧性選好・曖昧性忌避・サンクスコストについても解説/投資に応用すると
最近のコメント